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Seminumerical method for tracking multibreathers in Klein-Gordon chains
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Department of Physics, University of Thessaloniki, Thessaloniki 54124, Greece
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We present a method of numerical calculation of multibreathers in Klein-Gordon chains. This method
provides in advance the linear stability of the calculated multibreather solutions. We illustrate the method by
calculating initial conditions for multibreathers in a chain of coupled Morse oscillators.
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I. INTRODUCTION

Many researchers~e.g., Refs.@1,2#! are presently inter-
ested on spatially localized and time-periodic motions in s
tems of weakly coupled oscillators, which are called brea
ers. The first observation of breathers was made by Sie
and Takeno@3#. A generalization of the notion of a breath
is the multisite breather or multibreather where in the u
coupled limit more than one oscillators are moving. The fi
existence proof of breathers in systems of weekly coup
Hamiltonian or time-reversible oscillators has been given
Ref. @4#. This proof led directly to a method of numeric
calculation of the breather solutions~e.g., Ref.@5#!. Apart
from this, there exist also other numerical methods of cal
lating initial conditions for breathers or multibreathers, su
as the method of homoclinic orbits@6#.

In Ref. @7#, an existence proof of multibreathers is pr
sented, which is based on the ideas of Poincare´ ~@8#,@9# Sec.
42!. This proof shows the existence of monoparametric fa
lies of multibreathers with the total energy of the system a
parameter. In this work we present a systematic way of us
these results in order to acquire initial conditions for mu
breathers. The system we study is a chain of one-dimensi
oscillators with a nearest-neighbor coupling, through a sm
nonzero parameter«. This method provides the orbits, on th
phase-space of the system, for«50 which are going to be
continued, to provide a multibreather, for«Þ0. By fixing a
point on this orbit we get an initial estimation and, at t
same time, we define the Poincare´ section on which our roo
finding method is going to work. The use of the Poinca´
section is necessary due to Hamiltonian character of the
tem. The method also provides, in advance, the linear sta
ity of the calculated multibreather solution, by evaluating,
to orderO(A«) its characteristic exponents. The work is d
vided in two sections. In Sec. II we construct the meth
using the required elements from Ref.@7#. Since the formulas
provided there make use of the action-angle variables,
provide a way to perform the same calculations when
transformation is not known. In Sec. III, we apply th
method to a one-dimensional chain of weakly coupled Mo
oscillators.

II. DESCRIPTION OF THE METHOD

We define our oscillator by an autonomous Hamilton
of one degree of freedom
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Hosc5
1
2 p21V~x!,

wherex is the displacement,p is the conjugate momentum
andV(x) is the potential function. In this case the system
integrable sinceHosc is always an integral of motion. We
assume thatV(x) possesses a minimum atx50 with
V9(0)5vp

2 with vpPR. The well-known@10# action-angle
canonical transformation is defined in the area of
bounded motion of the oscillator, which is after all the m
tion that interests us. The motion of the oscillator is d
scribed, in these variables, by the equations

J5J~h!,

w5vt1q, ~1!

whereq5w(0) is the initial angle of the oscillation andh is
the pertinent value ofHosc for a specific orbit, which is ob-
viously constant along this orbit. In action-angle variabl
the Hamiltonian of the oscillator becomesHosc5Hosc(J),
and the frequency of the oscillation is given by

v~J!5
]Hosc~J!

]J
.

The chain, we are going to study, is constructed by c
sidering a countable set of oscillators with a nearest-neigh
coupling through a coupling constant«. The Hamiltonian of
the system becomes

H5H01«H1

5 (
i 52`

` S 1

2
pi

21Vi~xi ! D1
«

2 (
i 52`

`

~xi 112xi !
2, ~2!

wherexi is the position,pi represents the momentum, andVi
denotes the potential of thei th oscillator. Note thatH0 is
trivially integrable being separable. The equations of mot
for this Hamiltonian are

ẋk5
]H

]pk
5pk , ~3a!
©2004 The American Physical Society13-1
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ṗk52
]H

]xk
52Vk8~xk!1«~xk1122xk1xk21!, kPZ,

~3b!

where

Vk8~xk!5
dVk~xk!

dxk
.

For «50, which is the uncoupled case, we set a num
of neighboring oscillators, which we call ‘‘central,’’ movin
in periodic orbits satisfying the resonance condition

v2m

k2m
5•••5

vn

kn
5v, m, . . . ,nPN, k2m , . . . ,knPZ,

~4!

while the rest lie on the stable equilibrium point (xi ,pi)
5(0,0). The indices in Eq.~4! denote the oscillator. The
total number of central oscillators isq5m1n11 and we
denote byI 5$2m, . . . ,n% the set of indices for these osci
lators andI * 5$2m, . . . ,n%\$0%. Then, a periodic orbit of
period T52p/v is defined in the phase space of the co
plete system, and it corresponds to a time-periodic and tr
ally spatially localized motion along the chain. We define t
resonant anglesas

f i5k0q i2kiq0 , i PI * . ~5!

It is proven@7# that this motion is continued, for«Þ0 small
enough, forming a discrete multibreather if the followin
conditions are satisfied

TÞ
2p

vp
l 5 lTp , ; l PZ, ~6!

detU ]2H0

]Ji]Jj
UÞ0, i , j PI , ~7!

]^H1&
]f i

50, i PI * , ~8!

detU ]2^H1&
]f i]f j

UÞ0, i , j PI * , ~9!

where

^H1&5
1

TE0

T

H1dt, ~10!

is the average value ofH1. We note that the integration in
Eq. ~10! is performed along the periodic orbit of the u
coupled case, defined by Eq.~4!. Equation~6! is the nonreso-
nance condition with the phonons of the system and Eq.~7!
is the anharmonicity condition forH0. Since for«50 the
system is integrable and we considerq central oscillators, the
orbits lie on q-dimensional resonant tori. The solutions
Eq. ~8! define the orbits of such a resonant torus which w
be continued under a small but non-zero perturbation«
Þ0), while Eq.~9! denotes that the zeros of Eq.~8! must be
04661
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simple. The resonance condition~4! is valid, not only for one
torus, but for a monoparametric family of tori with the tot
energy of the system as a parameter. We can choose a r
sentative of this family by fixing the energy to a valueE0.

We denote byS the set of the periodic orbits on the res
nant torus that will be continued for«Þ0 andsiPS. It is
known that the solution of a Hamiltonian system, wi
Hamiltonian analytic with respect to a parameter«, is ana-
lytic with respect to the same parameter@11#. So, for «Þ0
the desired periodic orbits, which are essentially the mu
breathers we want to construct, will lie in th
«-neighborhood of the respectivesi .

Then the problem of finding a periodic orbit becomes
problem of finding the zeros of the function

F~ h̄ ![Fk~ h̄ !2h̄. ~11!

To approximate this solution, we have to use a numer
method of root finding in systems of nonlinear equations.
chose to use the Broyden method@12#, since its convergence
behavior seemed better than Newton’s method. This met
is shortly described on p. 389 of Ref.@13#. In order to cal-
culate the points of the map we need a method of numer
integration of differential equations and for that we use
fourth to fifth order with adaptive step size Runge-Ku
method, on p. 714 of Ref.@13#.

By calculating S we do not know yet if the resulting
multibreather will be stable or unstable. As it is known@14#,
the linear stability of the multibreather depends on the eig
values of the linearized system~3!. As it is described in Ref.
@7#, for « small enough, the eigenvalues of the noncen
oscillators lie on the unit circle, while the eigenvalues of t
central ones are

l i5e6s iT,

wheres i are thecharacteristic exponents. According to Ref.
@9# Sec. 79,s i are analytic with respect toA«, so they are
expanded as

s i5A«s i11o~A«!, i PI , ~12!

wheres i1
2 are the eigenvalues of theq3q matrix E defined

as

E52A•B, ~13!
3-2
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where

Aik5
]2^H1&
]q i]qk

, Bk j5
]2H0

]Jk]Jj
, i ,k, j PI . ~14!

Due to conservation of energy, one pair of eigenvaluesl i of
the central oscillators remains equal to one, i.e., one pa
exponents remains equal to zero in the perturbed system
all other eigenvalues lie on the unit circle of the compl
plane ~i.e., the corresponding exponents are purely ima
nary!, the breather is linearly stable, while if at least o
eigenvalue has modulus different from 1 it will be unstab
So, the only case for linear stability is met when all nonze
s i1

2 are negative and are simple eigenvalues of the ab
matrix E, since if somes i1

2 .0 the corresponding eigenva
ues will leave the unit circle along the real axis, and if
s i1

2 ,0 but are not distinct, complex instability can occur,
explained in Ref.@7#. The multibreather can become unstab
if « becomes large enough, so that the eigenvalues of
central oscillators reach the phonon band. Then, comp
instability can also occur.

As is obvious from the above analysis, the action-an
canonical transformation is crucial to the construction of
method. But its explicit form, which is often very hard to b
acquired, is not required. To demonstrate this fact we p
form the following analysis. Note that using Eq.~5!, we get
e
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]^H1&
]f i

52
1

k0

]^H1&
]q i

,
]2^H1&
]f i]f j

5
1

k0
2

]2^H1&
]q i]q j

, i , j PI * .

~15!

So, conditions~8! and ~9! become

]^H1&
]q i

50, ~16!

and

detU ]2^H1&
]q i]q j

UÞ0, i , j PI * , ~17!

respectively. By taking under consideration the facts that
action-angle variableswi ,Ji depend only on the correspond
ing xi ,pi , thatH1 depends only on thexi and that

dxi

dt
5v i

]xi

]wi
,

we get

]^H1&
]q i

5
1

TE0

T]H1

]wi
dt5

1

v iT
E

0

T]H1

]xi
pidt, ~18!

and
]2^H1&
]q iq j

5
1

TE0

T ]2H1

]wi]wj
dt55

1

v i
2T

E
0

T ]2H1

]xi
2

pi
21

]H1

]xi
ṗidt, i 5 j

1

v iv jT
E

0

T ]2H1

]xi]xj
pipjdt, iÞ j , i , j PI .

~19!
k

he

ng
We calculateq orbits in the domain of bounded motion of th
oscillator we consider, satisfying the resonance condition~4!,
calculate the corresponding energiesEi , and consider theq
central oscillators moving on them. This can easily be do
by numerically defining a functionT(x0 ,y0) which calcu-
lates the period of an orbit, given its initial conditions. Th
finding orbits satisfying the resonance condition~4! becomes
a usual shooting problem. Let h i 0

5(xi 0
,pi 0

)

5„xi(0),pi(0)…. Condition~16! defines, through Eq.~18!, a
relationship between the varioush i 0

condition~8!, as defines

a relationship betweenq i , determining this way the orbits o
the resonantq-torus for «50, which will be continued for
«Þ0 to provide the multibreathers. So, in order to acqu
initial conditions of these orbits for«50, we have to fix
somehk0

, usually by also taking care ofpk0
.0. This way,

in order to acquire the rest of theh i 0
, we have to solve a

system of equations which, because of the form ofH1, de-
composes to given1m independent two branched equatio
e

e

Fi~xi 0
!5E

0

T]H1

]xi
dt50, ~20!

where the value of pi 0
is calculated through pi 0

56A2(Ei2V(xi 0
). The fixed value ofxk0

, the sign ofpk0
,

and the value of the total energy for«50, E5( i 52m
n Ei

defines the Poincare´ section on which we are going to wor
in order to calculate the multibreathers for«Þ0 exactly as
we did before, where we will use as initial estimates t
calculated values ofh i 0

.
These solutions must satisfy also Eq.~17! for the continu-

ation to be valid. This condition is calculated by substituti
the elements of this determinant by Eq.~19!.

For the computation of the stability matrixE we have to
note that

Bi j 5
]2H0

]Ji]Jj
5H 0, iÞ j

dv i

dJi
, i 5 j ,
3-3
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and

dv i

dJi
5

dv i

dEi

dEi

dJi
. ~21!

Functionv(E) is easily defined by forcingh0 of the previ-
ously definedT(h0) to take values along the positivex axis.
Then the specific orbit crosses this axis toxi max

which is

related to the corresponding energy byEi5V(xi max
). So

v(E) is defined asv i(Ei)52p/T„xi max
(Ei),0…, while

Ji~Ei !5
1

pExi min
(Ei )

xi max
(Ei )

pidxi .

On the other hand,A in Eq. ~13! is calculated using relation
~19!.

Relations ~19!–~21! are not very hard to be compute
since functionsxi ,yi are sufficiently well behaving, being
solutions of differential equations which describe the mot
of an oscillator and are easily implemented using a softw
package which performs both analytical and numerical c
culations as, e.g.,MATHEMATICA . Note also that the accurac
much higher thanO(«) is not very useful if we are going to
use the results as initial estimates for multibreathers since
actual orbit lies in an«-neighborhood of this estimation.

III. AN EXAMPLE: CHAIN CONSISTING OF COUPLED
MORSE OSCILLATORS

The Morse oscillator is defined by the potentialVM(x)
5(e2x21)2 and its Hamiltonian is

HM5 1
2 p21~e2x21!2. ~22!

The action-angle canonical transformation for this system
the domain of bounded motions, is given by

w5arccosS 12~12E!ex

AE
D ,

J5A2~12A12E!, ~23!

TABLE I. First estimation forf215f15p.

q2150.361 367 q0521.390 11 q150.361 367

x2150.0 x053.271 092 x150.0
p2151.322 875 p0520.294 0698 p151.322 875

TABLE II. Second estimation forf215f153p.

q2150.361 367 q0524.531 71 q150.361 367

x2150.0 x053.628 595 x150.0
p2151.322 875 p050.205 678 p151.322 875
04661
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whereE is the energy of the oscillator, i.e., the value ofHM
for a specific bounded orbit. The Hamiltonian in action-ang
variables becomes

HM5 1
2 ~2A2J2J2!.

The frequency of the oscillation is

v5A2~12E!. ~24!

Note that, for periodic motion, it holds that 0,E,1. The
value E50 corresponds to the stable equilibrium atx50,
while E51 corresponds to the unstable equilibrium at infi
ity and its separatrix. Consequently, the Hamiltonian of
complete chain is

H5H01«H15 (
i 52`

` S 1

2
pi

21~e2xi21!2D
1

«

2 (
i 52`

`

~xi 112xi !
2.

At this point we need to decide the numberq of central
oscillators. We chooseq53, on sites21, 0, and 1~i.e., m
5n51). So, for«50, we assume that all the oscillators l
on the stable equilibrium (xk ,pk)5(0,0), except the three
central ones, which move in periodic orbits, satisfying t
resonance conditionk21T215k0T05k1T15T. In order to
evaluate the conditions which must be fulfilled for this m
tion to be continued for«Þ0 to provide the multibreather
we have, first of all, to calculatêH1&. The perturbative term
of the Hamiltonian for this specific case is

H15 1
2 @x21

2 1~x212x0!21~x02x1!21x1
2#, ~25!

and its average value will be

^H1&52E
0

T

x21x0dt2E
0

T

x0x1dt1c, ~26!

TABLE III. Initial conditions for a 2:1:2 multibreather with«
50.0001.

Site x p

0 3.627 812 858 975 0.207 299 776 628
1 0.0 1.322 289 057 449
2 1.361 989 220 831025 27.953 790 414 3431025

3 21.834 285 3531028 4.618 550 631028

4 27.203310213 21.261 58310211

5 23.250 21310211 1.961 46310211

6 4.137 00310211 1.290 02310211

7 22.387 64310211 21.647 55310211

8 3.5055310212 1.6442310212

9 27.3310215 5.82310214

10 0.0 0.0
3-4
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FIG. 1. The variation of the initial conditions for the ‘‘central’’ oscillators with respect to«.
e
te to
since the quadratic terms of Eq.~25! will provide terms in-
dependent ofq i , because their average value is independ
of the initial conditions on the torus. This has been evalua
in Ref. @7#, and it is

^H1&5(
i

2

k0ki
E arctanS sinf i

zi2cosf i
Ddf i1c, i 561,

~27!

wherezi5ekia01k0ai and coshai5Ei
21/2. The orbits that will

be continued are these which satisfy

]^H1&
]f i

50⇒f i50,p. ~28!

TABLE IV. Initial conditions for a 2:1:2 multibreather with«
50.0064.

Site x p

0 3.878 723 990 992 0.312 409 333 321
1 0.0 1.304 931 271 741
2 9.235 355 787 83331024 7.048 630 765 420331023

3 2.193 440 215 5131025 2.291 014 387 80931024

4 1.739 764 556731026 5.794 311 346831026

5 4.779 390 8831028 1.744 568 40431027

6 1.548 969931029 5.046 14931029

7 23.846 35310211 9.792 29310211

8 23.872 50310211 6.8740310212

9 2.918 50310211 23.7176310212

10 4.504 83310211 4.47934310211
04661
nt
d

These solutions satisfy also detu(]2^H1&/]f i]f j )uÞ0 and
the continuation is valid.

To define the stability of the breather solution, we need
calculate the matrixE defined in Eq.~13!. Since in this case

]2H0

]Jl]Jj
52d l j ,

it holds that

Ei j 5
]2^H1&
]q i]q j

; i , j P$21,0,1%,

and finally we get

FIG. 2. Time evolution of a 2:1:2 multibreather, for«
50.0064.
3-5
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FIG. 3. The variation of the energy and the period of the calculated multibreathers with respect to«.
c
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ar
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e 0
ec-

e
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ble
Ei j 5
]2^H1&
]q i]q j

55
0, i 52 j 561

k0
2 ]2^H1&

]f i
2

, i 5 j 561

2k0ki

]2^H1&

]f i
2

, i 561,j 50

(
l 561

kl
2 ]2^H1&

]f l
2

, i , j 50.

~29!

Using Eq.~27! the elements of the matrixE become

E115
2k0

k1

z1 cosf121

z1
222z1 cosf111

,

E10522
z1 cosf121

z1
222z1 cosf111

,

E21215
2k0

k21

z21 cosf2121

z21
2 22z21 cosf2111

,

E210522
z21 cosf2121

z21
2 22z21 cosf2111

,

E005
2k1

k0

z1 cosf121

z1
222z1 cosf111

1
2k21

k0

z21 cosf2121

z21
2 22z21 cosf2111

,

E21150.

We now have to choose a family with a specific resonan
We choosek215k152 andk051 that define the 2:1:2 reso
nance. We calculate the eigenvalues ofE which coincide to
s i1

2 in Eq. ~12!. We always have a zero eigenvalue. Ap
from this, for everyf50 we get, for this resonance, a pos
tive eigenvalue and forf5p we get a negative eigenvalue
In the box below we see the linear stability of the continu
multibreather for the differentsi .
04661
e.
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si f21 f1 Stability

s1 p p Stable
s2 p 0 Unstable
s3 0 p Unstable
s4 0 0 Unstable

We choose for examples1. We define our section with
x2150, p21.0, and forv51/4 in Eq.~4! which gives for
the total energyE5E211E01E15 81

32 . We calculateq21
by the action-angle transformation~23!, andq1 from Eq.~5!.
Note that, since the resonance between the21 oscillator,
through which we defined the surface of section, and th
oscillator is 2:1 the same orbit will cross the surface of s
tion in two distinct points. To calculate the second point w
put f15f2153p. We can use these two points as initi
estimations to calculate the initial conditions for the sta

TABLE V. Initial conditions for a 3:1:2 multibreather with«
50.003

Site x p

10 21.6082310212 6.883310213

9 22.57310214 23.759310213

8 3.403310213 7.249310213

7 21.76310214 28.905310213

6 25.5455310212 1.92253310211

5 8.257 078310210 22.472 736031029

4 24.386 186 9731028 1.935 814 49931027

3 1.448 213 911 7731025 22.595 187 926 2031025

2 3.374 092 576 53131023 2.019 169 816 69831023

1 2.761 549 204 437 28.907 506 361 15131022

0 4.459 826 334 650 23.156 430 138 95831022

21 0.0 1.183 358 227 340
22 5.321 016 762 60731024 22.874 821 181 9531023

23 21.362 784 997 1231025 3.964 585 013 8731025

24 9.175 537 6431028 23.260 196 92631027

25 21.068 337831029 3.389 659831029

26 1.378 34310211 23.557 11310211

27 4.840310213 4.5190310212

28 21.9042310212 22.929310212

29 4.139310213 26.02310214

210 5.364310213 1.7401310212
3-6
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FIG. 4. Time evolution of a 3:1:2 multibreather, for«50.003. Both sides of the multibreather are shown. The one showing the
resonance and the other showing the 3:1 resonance.
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2:1:2 multibreather on the surface of section~Tables I and
II !. We recall that the initial estimation for all the non-centr
oscillators it is (xi ,pi)5(0,0). Note that, sincef15f21,
we have alsox215x1 andp215p1. We chose to work with
the second one.

Now, the numerics come in to play and we have to us
finite chain. We use a chain of 21 oscillators with period
conditions at the edges. We set«Þ0 and calculate the solu
tion using the Broyden method, for«50.0001 ~Table III!.
All the presented solutions are, at least, 10210 near the peri-
odic orbit.

Note that since the initial estimation is symmetric so is
multibreather, i.e.,x2 i5xi andp2 i5pi . The maximum de-
viation of the initial conditions from the initial estimations
O(1023). Using the values of the initial conditions of th
calculated multibreather as input we can calculate the n
member of the family for«50.0002, and so on. In Fig. 1 w
see the variation of the initial conditions for the central o
cillators with respect to the coupling constant« with a step in
« of 231024. We recall that it is alwaysx2150. For ex-
ample the solution for«50.0064 is presented in Table IV
and its time evolution is shown in Fig. 2. By this method, t
energy and the periodT of the calculated multibreathers als
vary. This variation~Fig. 3! appears because we use as init
estimation for the initial conditions for the multibreather, t
initial conditions of the previously computed multibreath
which correspond to a smaller value of the coupling cons
«. But the same values forxi ,yi with larger« correspond to
a larger value of the energy of the system. Since the perio
a function of the energy, it varies too.

In the same way we calculated initial conditions for
3:1:2 multibreather for«50.003~Table V!. Note that, since
in this case the multibreather is not symmetric (q2 iÞq i),
we have xiÞx2 i and piÞp2 i , so both (x2 i ,p2 i) and
(xi ,pi) are shown. The time evolution for this multibreath
is shown in Fig. 4.

If the action-angle transformation was not known, w
could have used the method described in the end of the
ceding section in order to calculate the above results. Eq
tion ~18! transforms, for the particular example, to the fo
lowing relation

]^H1&
]q i

52
1

v iT
E

0

T

x0pidt, i 561,
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while ~17! becomes

]2^H1&
]q iq j

5H 1

v i
2T
E

0

T

$pi
212~2xi2x0!~e2xi21!e2xi%dt, i 5 j

0, iÞ j i , j P$21,0,1%.

~30!

So, Eq.~20! becomes

F~xi 0
!5E

0

T

x0pidt50.

The solutions of the above equation must also satisfy
~17! which, taking under consideration~30!, becomes

E
0

T

$pi
212~2xi2x0!~e2xi21!e2xi%dtÞ0.

As for the linear stability of these solutions, the eleme
of the stability matrixE can be computed following the pro
cedure described at the end of Sec. II, where we also m
use of Eq.~30!. The results of these numerical calculatio
are obviously the same as the ones calculated using
action-angle variables. Once programmed, this impleme
tion of the method, can provide all the information we c
get in less than 1 min. So, one could wonder about the ut
of the time-consuming calculations using the action-an
variables. The answer is that the results provided using
action-angle variables have a much nicer geometrical in
pretation as it can be shown from Eqs.~28! and ~5!.

IV. CONCLUSIONS

We presented a method of numerical calculation of
multibreathers which are predicted in Ref.@7#. This method
has the advantage of calculating analytically anO(«) esti-
mation of the initial conditions for a multibreather solutio
and its stability, provided the action-angle canonical trans
mation for the specific on-site potential of the oscillators
the chain is known. But even when the explicit form of th
3-7
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action-angle transformation is not known we provide form
las with respect to thexi ,pi variables only, which can be
easily solved and provide us the same results. Finally th
results are used to calculate a spatially symmetric and a
tially nonsymmetric multibreather in a chain consisting
coupled Morse oscillators. We have to note also, that
could use other methods of root finding, with probably bet
results on the accuracy and the convergence rate. The lat
reduced when Newton or approximate Newton methods
used, due to the near unity eigenvalues of the Newton
y

r-

04661
-

se
a-

f
e
r
r is
re
a-

trix. For future work, we plan to perform a comparison b
tween the different methods that can be used.
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