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Seminumerical method for tracking multibreathers in Klein-Gordon chains
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We present a method of numerical calculation of multibreathers in Klein-Gordon chains. This method
provides in advance the linear stability of the calculated multibreather solutions. We illustrate the method by
calculating initial conditions for multibreathers in a chain of coupled Morse oscillators.
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I. INTRODUCTION Hyem 1p2+V(X),

Many researcherge.g., Refs[1,2]) are presently inter- . . . .
ested on spatially localized and time-periodic motions in sysWherex is the displacemenp is the conjugate momentum,
tems of weakly coupled oscillators, which are called breath&ndV(X) is the potential function. In this case the system is
ers. The first observation of breathers was made by Sievetgtegrable sinceH is always an integral of motion. We
and Takend3]. A generalization of the notion of a breather assume thatV(x) possesses a minimum a=0 with
is the multisite breather or multibreather where in the unV"(0)=w} with w, R. The well-known[10] action-angle
coupled limit more than one oscillators are moving. The firstcanonical transformation is defined in the area of the
existence proof of breathers in systems of weekly coupledhounded motion of the oscillator, which is after all the mo-
Hamiltonian or time-reversible oscillators has been given intion that interests us. The motion of the oscillator is de-
Ref. [4]. This proof led directly to a method of numerical scribed, in these variables, by the equations
calculation of the breather solutioris.g., Ref.[5]). Apart
from this, there exist also other numerical methods of calcu-
lating initial conditions for breathers or multibreathers, such
as the method of homoclinic orbif§].

In Ref. [7], an existence proof of multibreathers is pre- W= wt+ 9 (1)
sented, which is based on the ideas of Poin¢g8E 9] Sec. '

42). This proof shows the existence of monoparametric fami-
lies of multibreathers with the total energy of the system as avhered=w(0) is the initial angle of the oscillation aruis
parameter. In this work we present a systematic way of usinghe pertinent value of ¢ for a specific orbit, which is ob-
these results in order to acquire initial conditions for multi- viously constant along this orbit. In action-angle variables,
breathers. The system we study is a chain of one-dimensiongte Hamiltonian of the oscillator becomés$,.=Hs{J),
oscillators with a nearest-neighbor coupling, through a smaland the frequency of the oscillation is given by
nonzero parameter. This method provides the orbits, on the
phase-space of the system, for0 which are going to be Mool J)
continued, to provide a multibreather, for=0. By fixing a w(J)= —==22
point on this orbit we get an initial estimation and, at the dJ
same time, we define the Poinca®ction on which our root
finding method is going to work. The use of the Poincare
feerztl(')l'r;ulas rﬂigﬁsﬁﬂys glg?c;\(/)i dl-ézmiI*t(;rg\?gn%r:aart?g?irn(e)];trhsetasgi%]dering a countable set of oscillators with a nearest-neighbor
ity of the calculated multibreather solution, by evaluating, upfr?Up“n? thrgugh a coupling constant The Hamiltonian of
to orderO(y/¢) its characteristic exponents. The work is di- € system becomes
vided in two sections. In Sec. Il we construct the method
using the required elements from Rf]. Since the formulas H=Hy+eH;
provided there make use of the action-angle variables, we w
provide a way to perform the same calculations when this _ (E 2

ion i : =2 pi + Vi(Xi)
transformation is not known. In Sec. lll, we apply this 2=\ 27!
method to a one-dimensional chain of weakly coupled Morse
oscillators.

J=J(h),

The chain, we are going to study, is constructed by con-

t5 3 Xk @

wherex; is the positionp; represents the momentum, avid
Il. DESCRIPTION OF THE METHOD denotes the pOtential of thieh oscillator. Note thaHo is
trivially integrable being separable. The equations of motion
We define our oscillator by an autonomous Hamiltonianfor this Hamiltonian are
of one degree of freedom

oH
Xk

. . . =-—=Px (3&)
*Electronic address: vkouk@skiathos.physics.auth.gr Pk

1539-3755/2004/69)/0466138)/$22.50 69 046613-1 ©2004 The American Physical Society



VASSILIS KOUKOULOYANNIS PHYSICAL REVIEW E 69, 046613 (2004

. H simple. The resonance conditiéf) is valid, not only for one
P=— o= = V(X)) +e(Xer1— 2%+ X-1),  KeZ, torus, but for a monoparametric family of tori with the total
K (3b) energy of the system as a parameter. We can choose a repre-
sentative of this family by fixing the energy to a valkg.
where We denote bys the set of the periodic orbits on the reso-
nant torus that will be continued far#0 ands;eS. It is
dVi(Xy) known that the solution of a Hamiltonian system, with
Vi(Xi) = dx. Hamiltonian analytic with respect to a parameteris ana-
K lytic with respect to the same parameféd]. So, fore#0
For =0, which is the uncoupled case, we set a numbethe desired periodic orbits, which are essentially the multi-

of neighboring oscillators, which we call “central,” moving Preathérs we ~want to construct, will lie in the

in periodic orbits satisfying the resonance condition e-neighborhood of the respectiee.
Each distinct set of ¢;, which satisfies Egs. (8) and (9)

®_m o ; / defines a s;. In order to attain initial conditions we have to
K, Tk, @ M nel Koy ke define an initial point on this specific orbit. We fix a specific
(4) ¥ and we calculate the other ¥; through Eq. (5) which
defines ¢;. We use the action-angle transformation and get
while the rest lie on the stable equilibrium poink; (p;) this point in coordinates x;,p;. We define the Poincaré sur-
=(0,0). The indices in Eq(4) denote the oscillator. The face of the section by fixing a specific x; and taking the
total number of central oscillators =m+n+1 and we  conjugate variable to be p;>0 on it. Let x,p be the position
denote byl ={—m, ... ,n} the set of indices for these oscil-
lators andl* ={—m, ... ,n}\{0}. Then, a periodic orbit of
period T=27/w is defined in the phase space of the com-
plete system, and it corresponds to a time-periodic and trivi _
ally spatially localized motion along the chain. We define thethat this orbit crosses the surface with p;>0. Then, if 7

and momentum vectors, respectively, and let ®(x,p) be the

Poincaré map. Every point (x,p) on the surface defines an
orbit in the phase space, and this map gives the next point

resonant anglegas =(x,p), for a periodic orbit of this map we have ®(7)
- =7 Iy, ®*(7)=Dodo---od(7)= 7.
‘Zsi:koﬁi*kiﬂo, iel*. (5) 7, or more generally, () o o (77) 7
k times

It is proven[7] that this motion is continued, far#0 small
enough, forming a discrete multibreather if the following pr
conditions are satisfied

Then the problem of finding a periodic orbit becomes a
oblem of finding the zeros of the function

F(7)=®X(9)— 7. (11)

2
T wp =T, ¥V 1eZ, ©) To approximate this solution, we have to use a numerical
method of root finding in systems of nonlinear equations. We
#*Ho - chose to use the Broyden methd®], since its convergence
de 93,93, #0, 1Ljel, (1) pehavior seemed better than Newton’s method. This method
J is shortly described on p. 389 of R¢fL3]. In order to cal-
d(Hy) L culate the points of the map we need a method of numerical
P =0, iel™, (8 integration of differential equations and for that we use a
fourth to fifth order with adaptive step size Runge-Kutta
9*(H,) o method, on p. 714 of Ref13].
de*a(,b-&(b- #0, i,jel”, ) By calculatingS we do not know yet if the resulting
e multibreather will be stable or unstable. As it is knoji],
where the linear stability of the multibreather depends on the eigen-
values of the linearized systef8). As it is described in Ref.
1T [7], for ¢ small enough, the eigenvalues of the noncentral
(Hy)= ff H,dt, (100  oscillators lie on the unit circle, while the eigenvalues of the
0 central ones are
is the average value dfl;. We note that the integration in Aj=e" i,

Eq. (10) is performed along the periodic orbit of the un-
coupled case, defined by Ed). Equation(6) is the nonreso-
nance condition with the phonons of the system and(Ex.
is the anharmonicity condition fad,. Since fore =0 the
system is integrable and we considgzentral oscillators, the o= \/ggi1+ o( \/E), iel, (12)
orbits lie on g-dimensional resonant tori. The solutions of ) _ ) )
Eq. (8) define the orbits of such a resonant torus which willwhereoy; are the eigenvalues of the< q matrix E defined
be continued under a small but non-zero perturbatien ( @s

#0), while Eq.(9) denotes that the zeros of E@) must be E=—A-B, (13)

whereg; are thecharacteristic exponent#ccording to Ref.
[9] Sec. 79,0, are analytic with respect tgs, so they are
expanded as
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where dHy) 1 d(Hy) @ Hy) 1 é%Hy)

- ’ — 5 ’ | 1.
(92<Hl> (92H0 ) ) 5¢| ko 513, ﬁ(ﬁléqu kg aﬁlaﬁj J €
k=729 79 Ki==———, 1,Kjel. (14) 15
99,00 93,3, (15

I*

Due to conservation of energy, one pair of eigenvaiesf ~ S0 conditions8) and(9) become
the central oscillators remains equal to one, i.e., one pair of a(H,)

exponents remains equal to zero in the perturbed system. If —=0, (16)
all other eigenvalues lie on the unit circle of the complex J9;

plane (i.e., the corresponding exponents are purely imagi-ng

nary), the breather is linearly stable, while if at least one

eigenvalue has modulus different from 1 it will be unstable. 9%(H,) o

So, the only case for linear stability is met when all nonzero de 70,09, #0, 1,jel”, (17)

0'i21 are negative and are simple eigenvalues of the above
matrix E, since if Somafi21>o the corresponding eigenval- respectively. By taking under consideration the facts that the
ues will leave the unit circle along the real axis, and if all @ction-angle variablew; ,J; depend only on the correspond-
04<0 but are not distinct, complex instability can occur, asind Xi,Pi, thatH; depends only on thg; and that
explained in Ref[7]. The multibreather can become unstable dx X

1 I

if &€ becomes large enough, so that the eigenvalues of the FTRETR
central oscillators reach the phonon band. Then, complex t IWi
instabi_lity can also occur. _ _ we get
As is obvious from the above analysis, the action-angle
canonical transformation is crucial to the construction of the HHy) 1 (ToH, 1 (ToH,
method. But its explicit form, which is often very hard to be a9, “To W, :ﬁ 0 IX; pidt, (18)
acquired, is not required. To demonstrate this fact we per-
form the following analysis. Note that using E&), we get  and
|
1 T 9°H, dH;.
2 2 2 J > p? pidt, 1=]
3 <H1>_1F IHyq die of T 0 X IXi 19
009 Tloowaw, | 1 T 92H, 19
ip;dt, i#j, i,jel.
w,w]T fo (9Xi(9Xj pIpJ J Ie

We calculateg orbits in the domain of bounded motion of the H,

oscillator we consider, satisfying the resonance condi#on Fi(xi))= JO —x 4t=0, (20
calculate the corresponding energies and consider the '

central oscillators moving on them. This can easily be donavhere the value of p;  is calculated throughp;
by numerically defining a functio(xq,yo) which calcu- ==+ ‘/2(Ei—V(xio). The fixed value okko, the sign ofpko,
lates the period of an orbit, given its initial conditions. Thenand the value of the total energy fer=0, E==" _.E
finding orbits satisfying the resonance conditidhbecomes defines the Poincargection on which we are going to work
a usual shooting problem. Let 7 =(x; ,p;) in order to calculate the multibreathers fo#0 exactly as

= (x,(0),p;(0)). Condition(16) defines, through Eq18), a we did before, where we will use as initial estimates the
| L] " 1 ’

: X : . ! calculated values ofj; .
relationship between the varioug_condition(8), as defines . Of]'o . .
0 These solutions must satisfy also E#j7) for the continu-

a relationship betweeti; , determining this way the orbits of 4tion to be valid. This condition is calculated by substituting
the resonanti-torus fore=0, which will be continued for the elements of this determinant by E9).

e#0 to provide the multibreathers. So, in order to acquire For the computation of the stability matri we have to
initial conditions of these orbits foe=0, we have to fix note that
someny,, usually by also taking care qn‘ko>0. This way,

in order to acquire the rest of th@o, we have to solve a 8°Hy q
={ do,

. . Bii= =
system of equations which, because of the fornHgf de- MRAIA)
composes to givea+ m independent two branched equations
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TABLE |. First estimation for¢p_ ;= ¢,= . TABLE lIlI. Initial conditions for a 2:1:2 multibreather witla
=0.0001.
¥_,=0.361367 ¥p=-1.39011 9,=0.361 367
Site X p
x_1=0.0 Xo=3.271092 x;=0.0
p_,=1.322875 po=—0.294 0698 p,=1.322875 0 3.627 812858 975 0.207 299 776 628
1 0.0 1.322 289 057 449
2 1.3619892208&10 ° —7.9537904143410 °
and 3 —1.8342853%10°8 4.6185506<10°8
4 —7.203x107 13 —1.2615810 11
do; do;dE 5 —3.25021x 10711 1.96146<10 1
43 " dE 43, @Y 6 41370 10" 1 1.29002¢10° 1
7 —2.38764¢10° 1! —1.64755¢10" 1!
Functionw(E) is easily defined by forcingy, of the previ- 8 3.5055¢10" 2 1.6442<10 2
9 —7.3x10° 1 5.82x10 1

ously definedT () to take values along the positixeaxis.
Then the specific orbit crosses this axisxg_ which is 10 0.0 0.0

related to the corresponding energy Ey=V(xima). So
w(E) is defined a&)i(Ei):277/T(ximaX(Ei),0), while

whereE is the energy of the oscillator, i.e., the valuetbf,
for a specific bounded orbit. The Hamiltonian in action-angle
1 [%i,.E) variables becomes
Ji(Ei):_f pidx; .
X (E)
Hu=3(2y2J-3%).

On the other handd in Eq. (13) is calculated using relations o
(19). The frequency of the oscillation is

Relations (19)—(21) are not very hard to be computed
since functionsx;,y; are sufficiently well behaving, being w=y2(1-E). (24)
solutions of differential equations which describe the motion
of an oscillator and are easily implemented using a softwar@ote that, for periodic motion, it holds that<0E<1. The
package which performs both analytical and numerical calvalue E=0 corresponds to the stable equilibriumxat 0,
culations as, e.gMATHEMATICA . Note also that the accuracy while E=1 corresponds to the unstable equilibrium at infin-
much higher thai©(e) is not very useful if we are going to ity and its separatrix. Consequently, the Hamiltonian of the
use the results as initial estimates for multibreathers since theomplete chain is
actual orbit lies in are-neighborhood of this estimation.

_ _ “n2 —Xj_1)\2
lll. AN EXAMPLE: CHAIN CONSISTING OF COUPLED H_H0+8H1_i:2_m pPit(e 1) )
MORSE OSCILLATORS
Trje Mogse ospillator ?s d(_afing-d by the potenti&);(x) + e ' Z (Xi+1—X)2.
=(e *=1)° and its Hamiltonian is i=—c
Hy=3p?+ (e *—1)2% (22) At this point we need to decide the numbegrof central

oscillators. We choosg=3, on sites—1, 0, and 1(i.e., m
The action-angle canonical transformation for this system, ir= "=1). So, fore=0, we assume that all the oscillators lie

the domain of bounded motions, is given by on the stable equilibriumx,p,)=(0,0), except the three
central ones, which move in periodic orbits, satisfying the
1-(1-E)e* resonance conditip_k,lT,l.z koTozlelzT. In order. to
w=arcco$ —————— |, evaluate the conditions which must be fulfilled for this mo-
\/E tion to be continued foe#0 to provide the multibreather,
we have, first of all, to calculatgH,). The perturbative term
J= \/5(1_ \/ﬁ) (23) of the Hamiltonian for this specific case is
_1ry2 2 2 2
TABLE II. Second estimation fog_,= ¢,=3. Hi=3[xZ 1+ (Xo1=X0)“+ (Xo—=X1) "+ x1], (29
¥_,=0.361367 Yo=—4.53171 ¥,=0.361367  and its average value will be
X_;=0.0 Xo=3.628 595 x,;=0.0 . .
p_,=1.322875 po=0.205 678 p,=1.322875 (Hy)= _f X—1X0dt_f XoX,dt+c, (26)
0 0
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FIG. 1. The variation of the initial conditions for the “central” oscillators with respect to
since the quadratic terms of E(5) will provide terms in-  These solutions satisfy also def(Hl)/ad)iadaj)liO and

dependent o, because their average value is independenthe continuation is valid.
of the initial conditions on the torus. This has been evaluated To define the stability of the breather solution, we need to

in Ref.[7], and it is calculate the matrie defined in Eq(13). Since in this case
2 Sin ¢
Hy)= — | arctan ———|d¢i+c, i==1,
(H) El Koki rézi_COS(ﬁi) ¢ 2
(27) o __s
9303, W
wherez; = eki%**o% and costy,=E Y. The orbits that will
be continued are these which satisfy
it holds that
d(Hy)
——=0=¢;=0,7. 28
d*(Hy) .
TABLE IV. Initial conditions for a 2:1:2 multibreather witla Eij= Y i,je{-101,

_ AV, 07
=0.0064. J

Site X p

and finally we get

0 3.878 723990992 0.312 409 333 321

1 0.0 1.304931 271741

2 9.235355 78783810 ¢ 7.048 630 765 4208103

3 2.1934402155%10°° 2.291 01438780910 *

4 1.739 764 556% 10 © 5.794 311346810 °

5 4.77939088 108 1.744 568 40% 107

6 1.548 969% 10 ° 5.046 14% 10°°

7  —3.84635¢10 ! 9.7922% 10 %

8  —3.87250<10 ! 6.8740<10 12

9 2.91850k 10 1t —3.7176x10 12

10 45048%x 1011 4.47934< 10”11 FIG. 2. Time evolution of a 2:1:2 multibreather, fos

=0.0064.
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FIG. 3. The variation of the energy and the period of the calculated multibreathers with respect to

(0, i=—j==1 S b1 1 Stability
2 (HY —jo=1 s1 w m Stable
0 a? S, T 0 Unstable
S%(H,) ' , S 0 T Unstable
ij :M: < - kOki (9 <H21> 1 == 1,] :0 S4 O 0 UnStabIe
I
) We choose for exampls;. We define our section with
2 kza (Hy) j=0 X_1=0, p_1>0, and foro=1/4 in Eq.(4) which gives for
15 Y the total energyE=E_,+E,+E;=2. We calculated_,

(29 by the action-angle transformatié23), andd; from Eq.(5).
Note that, since the resonance between thk oscillator,
through which we defined the surface of section, and the 0
oscillator is 2:1 the same orbit will cross the surface of sec-
tion in two distinct points. To calculate the second point we
put ¢;=¢_,=3m. We can use these two points as initial

estimations to calculate the initial conditions for the stable

Using Eq.(27) the elements of the matrik become

2k,
Ki 72-27, cosgp;+1

z,CcoS¢p;—1

1=

Z1C0S¢p;— 1 . " . .
Eio=—2- , TABLE V. Initial conditions for a 3:1:2 multibreather with
z{—2z;cos¢p,+1 =0.003
. 2k, z_,cos¢p_,—1 Site X p
k1 2,-27 cospq+1] 10 —1.6082¢10°%2 6.883<10" 13
9 —2.57x10™ 1 —3.759x 10 13
Z_,cos¢p_,—1 8 3.403< 10713 7.249x10° 13
E_10=—27 , 7 —-1.76x10° " —8.905< 10713
221722.1€05¢ 1 +1 6  —55455¢10 12 1.92253¢10" 1
5 8.257 07& 10710 —2.472736x10°°
. 2ky 7 cos¢y—1 4  —43861869%10°° 1.935814 49 107
Ko z2—2z, cosp,+1 3 1448213911 7710 ° —2.595187 926 2810 °
2 3.37409257653110°° 2.019169816 69810 °
2k_;  z_jc08¢_;—1 1 2.761549 204 437 —8.907 506 361 15% 102
Ko 22_1—22_1cos¢_1+1’ 0 4.459 826 334 650 —3.156430138 958 10" 2
-1 0.0 1.183 358 227 340
E_,;,=0. -2 5.321016 76260710 4 —2.8748211819510 3
-3 —1.3627849971210°° 3.964585013 8% 107 °
We now have to choose a family with a specific resonance. —4 9.175537 6410 8 —3.260196 926107
We choose&k_;=k;=2 andky=1 that define the 2:1:2reso- -5 —1.068337&10°° 3.389659% 10°°
nance. We calculate the eigenvaluesEoivhich coincide to -6 1.37834& 10 % —3.55711x 10" 1!
aizl in Eq. (12). We always have a zero eigenvalue. Apart —7 4.840<10° 18 4.5190< 10 12
from this, for every¢p=0 we get, for this resonance, a posi- -8 —1.9042<10 12 —2.929x 10712
tive eigenvalue and fop= 7 we get a negative eigenvalue. -9 4.139<10° 13 —6.02x10° 4
In the box below we see the linear stability of the continued —19 5.364< 10~ 13 1.7401x 1012

multibreather for the differers; .
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FIG. 4. Time evolution of a 3:1:2 multibreather, fer=0.003. Both sides of the multibreather are shown. The one showing the 2:1
resonance and the other showing the 3:1 resonance.

2:1:2 multibreather on the surface of sectidrables | and while (17) becomes
II). We recall that the initial estimation for all the non-central
oscillators it is &;,p;)=(0,0). Note that, sinceb;=d¢_1, J*(Hy)
we have alsx_;=x; andp_;=p;. We chose to work with 79, 9,
the second one.
Now, the numerics come in to play and we have to use a 1 (7 , e e .
finite chain. We use a chain of 21 oscillators with periodic ~ _ Efo P +2(2xi—xo) (67— 1)e "}dt, i=]
conditions at the edges. We set 0 and calculate the solu- !
tion using the Broyden method, far=0.0001 (Table ). 0, i#j i,je{-10,1.
Al the presented solutions are, at least; 1dnear the peri- (30)
odic orbit.
Note that since the initial estimation is symmetric so is the So, Eq.(20) becomes
multibreather, i.e.x_;=x; andp_;=p;. The maximum de-
viation of the initial conditions from the initial estimations is T
O(1073). Using the values of the initial conditions of the F(Xig)= fo Xopidt=0.
calculated multibreather as input we can calculate the next
member of the family foe =0.0002, and so on. In Fig. 1 we The solutions of the above equation must also satisfy Eq.
see the variation of the initial conditions for the central 0s-(17) which, taking under consideratid80), becomes
cillators with respect to the coupling constanivith a step in
e of 2xX10 4. We recall that it is always_,;=0. For ex-
ample the solution foe =0.0064 is presented in Table IV
and its time evolution is shown in Fig. 2. By this method, the

energy and the period of the calculated multibreathers also  as for the linear stability of these solutions, the elements
vary. This variation(Fig. 3) appears because we use as initial of the stability matrixE can be computed following the pro-
estimation for the initial conditions for the multibreather, the cequre described at the end of Sec. II, where we also make
initial conditions of the previously computed multibreather ;ge of Eq.(30). The results of these numerical calculations
which correspond to a smaller value of the coupling constanjre obviously the same as the ones calculated using the
e. But the same values fog;y; with largerz correspond to  action-angle variables. Once programmed, this implementa-
alarger value of the energy of the system. Since the period ion of the method, can provide all the information we can
a function of the energy, it varies too. B getin less than 1 min. So, one could wonder about the utility
In the same way we calculated initial conditions for aof the time-consuming calculations using the action-angle
3:1:2 multibreather foe =0.003(Table V). Note that, since yariables. The answer is that the results provided using the
in this case the multibreather is not symmetri¢_(# i),  action-angle variables have a much nicer geometrical inter-

we havex;#x_; and p;j#p-;, so both & ;,p_;) and pretation as it can be shown from E4&8) and (5).
(x;,p;) are shown. The time evolution for this multibreather

is shown in Fig. 4.

If the action-angle transformation was not known, we
could have used the method described in the end of the pre- We presented a method of numerical calculation of the
ceding section in order to calculate the above results. Equanultibreathers which are predicted in RET]. This method
tion (18) transforms, for the particular example, to the fol- has the advantage of calculating analytically @¢e) esti-

fT{pinr 2(2x;—Xp) (e Xi—1)e "i}dt#0.
0

IV. CONCLUSIONS

lowing relation mation of the initial conditions for a multibreather solution
and its stability, provided the action-angle canonical transfor-

a(Hy) __ LJTX dt. i==+1 mation for the specific on-site potential of the oscillators of

dv; T Jo oPict, - the chain is known. But even when the explicit form of the
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action-angle transformation is not known we provide formu-trix. For future work, we plan to perform a comparison be-
las with respect to the;,p; variables only, which can be tween the different methods that can be used.

easily solved and provide us the same results. Finally these
results are used to calculate a spatially symmetric and a spa-
tially nonsymmetric multibreather in a chain consisting of
coupled Morse oscillators. We have to note also, that one The author would like to thank Assistant Professor S. Ich-
could use other methods of root finding, with probably bettertiaroglou for his constructive criticism and Professor M. Vra-
results on the accuracy and the convergence rate. The latterhiatis for suggesting the root finding numerical method. This
reduced when Newton or approximate Newton methods areork has been partially supported by the Greek Scholarship
used, due to the near unity eigenvalues of the Newton maFoundation(IKY ).
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